3D Bioplotter Research Papers

Displaying all papers by R. P. Keatch (3 results)

Thermal imaging analysis of 3D biological agarose matrices

International Journal of Medical Engineering and Informatics 2011 Volume 3, Issue 2, Pages 167-179

Advances in rapid prototyping have allowed for the construction of biocompatible materials (hydrogels) to be used in regenerative medicine. Within this area of construction inherent problems arise due to the mechanical instability of such materials that are temperature dependent. This research paper describes a thermal imaging analysis used to circumvent needle blockage when using an RP technology called bioplotting, used for extruding high temperature hydrogels, where agarose was the experimental biomaterial. The investigation describes how we have overcome these inherent problems through thermal imaging analysis, allowing us to accurately construct 3D biological matrices that have satisfied the in-vitro cell requirements…

Construction of 3D biological matrices using rapid prototyping technology

Rapid Prototyping Journal 2009 Volume 15, Issue 3, Pages 204 - 210

Purpose Hydrogels with low viscosities tend to be difficult to use in constructing tissue engineering (TE) scaffolds used to replace or restore damaged tissue, due to the length of time it takes for final gelation to take place resulting in the scaffolds collapsing due to their mechanical instability. However, recent advances in rapid prototyping have allowed for a new technology called bioplotting to be developed, which aims to circumvent these inherent problems. This paper aims to present details of the process. Design/methodology/approach The paper demonstrates how by using the bioplotting technique complex 3D geometrical scaffolds with accurate feature sizes and…

Formed 3D Bio-Scaffolds via Rapid Prototyping Technology

IFMBE Proceedings 2009 Volume 22, Pages 2200-2204

The construction of biomaterial scaffolds for cell seeding is now seen as the most common approach for producing artificial tissue as compared with cell self-assembly and Acellular matrix techniques. This paper describes the use of synthetic and natural polymeric material shaped into 3D biological matrices by using Rapid Prototyping (RP) technology. Recent advances in RP technology have greatly enhanced the range of biomaterials that can now be constructed into scaffolds, also allowing for maximized control of the pore size and architecture. Bioplotting is one such method which allows the dispensing of various biomaterials into a media bath which has similar…